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We present a space-time description of regular and complex phenomena which 
consists of a decomposition of a spatiotemporal signal into orthogonal temporal 
modes that we call chronos and orthogonal spatial modes that we call topos. 
This permits the introduction of several characteristics of the signal, three 
characteristic energies and entropies (one temporal, one spatial, and one 
global), and a characteristic dimension. Although the technique is general, we 
concentrate on its applications to hydrodynamic problems, specifically the 
transition to turbulence. We consider two cases of application: a coupled map 
lattice as a dynamical system model for spatiotemporal complexity and the open 
flow instability on a rotating disk. In the latter, we show a direct relation 
between the global entropy and the different instabilities that the flow undergoes 
as Reynolds number increases. 

KEY WORDS: Spatiotemporat complexity; spatiotemporal chaos; signal 
analysis; Liapunov exponents; coupled map lattices; turbulence; transition to 
turbulence. 

I N T R O D U C T I O N  

T h e  recen t  a p p l i c a t i o n  of  d y n a m i c a l  sys tems  and  b i fu rca t ion  t h e o r y  to 

the  field o f  h y d r o d y n a m i c s  has  p r o v i d e d  a r e a s o n a b l e  u n d e r s t a n d i n g  of  

t r a n s i t i o n  to  t u r b u l e n c e  in severe ly  c losed  f low sys tems such  as T a y l o r -  

C o u e t t e  a n d  R a y l e i g h - B 6 n a r d  flows. In  these  systems,  d i s o r d e r  occurs  on ly  

t e m p o r a l l y ,  s ince the  spa t ia l  s t ruc tu re  of  the  sys tem is quas i f rozen  by the  

conf ined  b o u n d a r i e s .  In  these  cases, indeed ,  there  seems to  be a c lose 

i Benjamin Levich Institute and Department of Mechanical Engineering, City College of the 
City University of New York, New York, New York 10031. 

z Centre National de Ia Recherche Scientifique, Centre de Physique Th6orique, Luminy, 
Case 907, 13288 Marseille, France. Laboratoire Propre CNRS. 

3 Institute for Scientific Interchange, 10133 Torino, Italy. 

683 

0022-4715/91/0800-0683$06.50/0 �9 1991 Plenum Publishing Corporation 



684 Aubry e t  al. 

connection between low-dimensional dynamics and fluid behavior and yet 
some "theoretical" routes to chaos have been identified in well-controlled 
experiments. These routes are period doubling (of which some universal 
characteristics have been described by Feigenbaum(23~), quasiperiodicity (in 
which a T k torus becomes unstable, as shown by Ruelle and Takens ~6~ and 
Newhouse et al.~53~), and intermittency, first described by Pomeau and 
Manneville. (54) For examples, the first route has been observed by 
Libchaber et aL ~42) in 2D B6nard convection, the second one has been 
identified by Gollub and Swinney (28) in Taylor-Couette flow, and the third 
one has been found by Berg6 et al. (1~ in a convection experiment. 

The situation, however, is not so clear as the degree of confinement 
decreases and spatial disorder develops rapidly. Then, a large number of 
time and space scales become dynamically involved (often intermittently), 
even close to transition. From the theoretical point of view, notice that this 
intermittent regime in low-dimensional dynamical systems is present even 
in the most chaotic situation (mixing), as, for instance, in certain billiards 
problems, where periods of regular motion (as the ball is close to the wall) 
alternate with periods of random motion/TM In the transitional phase, a 
typical regime seems to be spatiotemporal intermittency (STI), a mixture of 
organized "laminar" regions and disorganized "turbulent" spots. As the 
system evolves away from the critical point, the "turbulent" islands seem to 
invade the full flow domain and become more and more frequent. Thus, 
disorder is both spatial and temporal in the transition process from laminar 
to turbulent flow in (relatively) spatially large domains, and the standard 
dynamical systems approach, which takes into account temporal dynamics 
only, becomes almost useless. Another approach is needed. A statistical 
mechanics description has been often proposed, (55~ but the construction of 
such a theory for systems which present space-time complexity is still an 
open question. 

A large number of theoretical models has been developed to under- 
stand one dimensional (1D) spatiotemporal intermittency in (spatially) 
extended systems. These include coupled map lattices (14'34) and 1D partial 
differential equations (essentially the Kuramoto-Sivashinsky equation and 
the Ginzburg-Landau equation). Quasi-lD experiments have been specifi- 
cally designed to study Rayleigh-B6nard convection in 1D annular 
geometr3; ~ for comparison between models and experiments. Although 
both numerical and experimental data display STI, the comparison suffers 
from the lack of tools to study space-time complexity. For example, there 
is no spatiotemporal equivalent to a dimension or an entropy as defined in 
temporal chaos. Moreover, Fourier analysis is no longer of much use since 
a large number of modes appear at the instability threshold. 

As is well known, spatiotemporal intermittency and disorder do not 



Spatiotemporal Analysis of Complex Signals 685 

occur only in transition phenomena, but they are ubiquitously present in 
all fully developed turbulent flows. Here, STI manifests itself in terms of the 
so-called "coherent structures" (CS) and their "intermittent" dynamics 
which have been visualized for a large number of years. Although most 
theoretical models treat turbulence as a purely random process, the impor- 
tance of organized patterns has been shown to be of primary importance 
in generation, transport, and maintenance of turbulence. They have also 
permitted a great advance in turbulence control. (43) Despite an enormous 
amount of research in this area, (1'11'16'32,33,47,58,7x) the shape of these 
patterns as well as their evolution in time are still not well understood. 
There is thus no formulation to include CS into theoretical and numerical 
models of fully developed turbulent flows. One of the first attempts is that 
of Aubry et al. (4) (see also Aubry and Sanghi(5~), who used Lumley's defini- 
tion of coherent structures to derive dynamical models. (45-47) The method 
has proved to be very successful in describing wall turbulence dynamics. 
Lumley utilized the proper orthogonal decomposition (POD) theorem of 
probability theory (44~ to represent a realization of a random function as a 
series of deterministic functions with random coefficients. This is a well- 
known procedure in signal analysis, where it is often referred to as the 
"Karhunen Lo~ve decomposition. ''(36/ Lumley introduced this statistical 
tool (which he generalized to several dimensions) to define coherent 
structures in turbulence. It also has been recently used by Sirovich and 
co-workers in a number of problems (see, for instance, Sirovich (62,63) and 
references therein). Organized patterns, identified with the deterministic 
(proper orthogonal) functions, are then mathematically defined. They are, 
in a statistical sense, the most probable features (since, extracted from 
statistics, they are common to all realizations). Making the hypothesis of 
ergodicity and stationarity for a turbulent flow, Aubry et al. (4~ investigated 
the time evolultion of the structures by putting the time dependence in the 
random coefficients that they determined by projecting the Navier-Stokes 
equations onto these basis functions. This procedure is also discussed by 
Sirovich (62) for its application to turbulence in the case of ergodicity. 

The object of this paper is to propose a systematic mathematical tool 
to study space-time evolution of a complex system. The method consists in 
a biorthogonal  decomposit ion into spatial orthogonal modes (called topos) 
and temporal orthogonal modes (called chronos). There is no restriction 
on the dimension of the topos, which can be one-, two-, or three-dimen- 
sional. In the 2D and 3D cases, topos should be closely related to certain 
kinds of physically coherent structures. Although our approach can be 
viewed as a time-space-symmetric version of the Karhunen-Lo6ve expan- 
sion, it is in principle fundamentally different. Only its time-space 
symmetry can justify the access to the deterministic dynamics and 
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structures without any particular assumption regarding ergodicity of the 
system, its stationarity, or the uncorrelation of the time points at which 
data are recorded. This is thus a completely deterministic tool (rather than 
statistical), which can be applied to a laminar, transitional (in particular 
intermittent), or fully developed turbulent signal. From this viewpoint, we 
keep in mind that the signal is produced by the dynamics in some phase 
space. Pursuing this further, we use the biorthogonal decomposition into 
topos and chronos to be able to analyze the phase space structure of the 
dynamics. Each spatial mode can be associated with an instantaneous 
coherent structure which has a temporal evolution directly given by its 
corresponding temporal mode. This should address the criticism by 
Wallace and Hussain ~7~ on current available tools to study coherent 
structures: "It is not enough to know the most probable distributions of 
vorticity or velocity fluctuations. It is necessary to know how the patterns 
will evolve." 

The paper is organized as follows. In Section 1, we show the existence 
of a spatiotemporal decomposition of a signal into spatial and temporal 
orthogonal modes which are coupled (in the sense that there is a one-to- 
one correspondence). We then define in Section 2 global characteristics of 
the signal: a dimension, three energies, and entropies. Attention is 
particularly given to the robustness of the dimension in cases where time 
and/or space are discretized. In Section 3, we establish the connection 
between the decomposition and the underlying dynamical system. These 
ideas are finally applied to a coupled map lattice which displays spatio- 
temporal intermittency in Section4 and to experimental data in a 
transitional flow on a rotating flat disk in Section 5. 

1. A S P A T I O T E M P O R A L  B I O R T H O G O N A L  D E C O M P O S I T I O N  

We first consider the analysis of a space-time signal obtained by 
simultaneous measurements at multiple locations in the flow domain over 
a sufficiently long time. While this may not be a problem for flows 
numerically simulated (although a sufficiently long integration time for 
fully developed flows is often costly), this is a hard task for experimentalists 
who have to overcome the difficulty of probe interference in the case of hot 
wires and hot films and a high cost in the case of laser-Doppler 
anemometry. In certain flows, however, simultaneous measurements with a 
rake of hot wires are possible (see, e.g., Glauser et aL(26)). Some more 
efficient experimental techniques have been designed, such as the laser 
scanning technique used, for example, by Ciliberto et aL, ~'8) the image 
processing of hydrogen bubble lines used by Smith and Paxton ~64) in the 
turbulent boundary layer (and also by Fincham and Blackwelder~24)), and 
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the particle image velocimetry (PIV) (see, e.g., Adrian ~2) and Khalighi(39)). 
In the latter, multiple exposure image of light from small particles moving 
with the fluid is analyzed to obtain the particle displacements and hence 
the fluid velocity at many spatial locations. All these image processing 
techniques have experienced rapid expansion in the last few years. For  the 
reverse operation in which we seek to recover the signal, we will see that 
the necessary data are the spatial two-point correlation (defined with a 
temporal measure) and its equivalent, the temporal two-point correlations 
(defined with a spatial measure). 

In this section, we are considering the analysis of a deterministic 
space-time signal u(x, t) which is the result of simultaneous measurements 
at different spatial locations over a certain time. We call the signal u by 
analogy with the velocity, but of course it can be any other variable, such 
as the pressure, the vorticity, etc. In the following, X denotes the set of 
spatial measurement points and T the set of times at which measurements 
are recorded. We can consider either X =  R n or X =  Z n or subsets of one of 
these. In the same way, we can consider either T =  R or T =  Z or subsets 
of R or Z. In particular, if n = 2, the measurements are two-dimensional 
(2D) and we are seeking for 2D flow structures; if n = 3, the measurements 
are three-dimensional (3D) and will represent 3D flow structures. 

Def in i t ion 1.0. A signal is a measurable, complex-valued function 
u defined on X x T. At first, we will consider a scalar function u ~ R. The 
analysis will be generalized to a vectorial signal u s R  a in Theorem 1.13. 
The signal can be a continuous function u e C ( X x  T), a square-integrable 
function u ~ L2(Xx  T), a bounded function u ~ L ( X x  T), or, by extension, 
a tempered distribution u ~ S (X  x T). 

Proposition 1.1. Each signal defines a linear operator 

u: L:(x)--, L2(r) 

such that 

v~o eL2(x), (uq~)(t)=fx 

The adjoint operator is defined as 

U*: L 2 ( T ) ~  L2(X) 

such that 

Vr ~ L2(T), 

where the bar denotes the complex conjugate. 

u(x, t) ~o(x) ax (1.1) 

(U*r = fru(x ,  t) r dt (1.2) 

822/64/3-4-14 
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P r o p o s i t i o n  1.2. Formulas (1.1) and (1.2) define bounded 
operators in the case where u ~ LE(x• T), for instance. In the other cases, 
the operators U and U* can still be defined on appropriate restricted 
domains D(U) in L2(X) and D(U*) in L2(T). ~37) 

P r o p o s i t i o n  1.3. The analysis of the signal u(x, t) is reduced to the 
spectral analysis of the operator U. The existence of a continuous part in 
the spectrum is possible. However, if u~L2(X• T) or if X and T are 
compact and u is a continuous function u ~ C(Xx T), then U is a compact 
operator and the spectrum of U consists of a denumerable set of isolated, 
singular points. In the following, we will suppose that the operator U is 
indeed compact (and so is U*). As an example of this, we assume that 
U ~ L2(X • T). 

Proposition 1.4. 

such that 

We now introduce the operators: 

R: LZ(T)~ L2(T) 

R= UU* 

and 

such that 

L: L2(X)-~ L2(X) 

L= U*U 

The operator R is the integral, nonnegative operator whose kernel is the 
temporal correlation of the signal u(x, t). Similarly, the operator L is the 
integral, nonnegative operator whose kernel is the temporal two-point 
correlation of the signal u(x, t). 

ProoL Let us consider a function ~ in L2(T). We can write 

(RO )(t) = ( UU*O )(t) 

=f~u(x, t)(U*O)(x) ax 

= Ix ITu(x, t) u(x, s) ~(s) dx ds 

= f~ r(t, s) ~(s) ds 
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where r(t, s) is the temporal correlation function of the signal u(x, t) 
defined as the following: 

r(t, s) = fx u(x, t) u(x, s) dx (1.3) 

The proof relative to the operator L = U*U is identical to the previous one 
where space and time variables must simply be interchanged, the spatial 
correlation function of the signal u(x, t) being defined as 

l(x, y)= fTU(X, t)u(y, t)dt (1.4) 

T h e o r e m  1.5. This is the theorem of the analysis of the signal 
u(x, t). There exists a canonical decomposition of the signal u(x, t) such 
that 

u(x, t)= ~ ~k~ok(x)~'k(t) (1.5) 
k = l  

with 

lim :~N=0 
N ~ o o  

(q~k, ~0,) = (Oh, ~ , )  = ,~k,, 

The series (1.5) converges in norm. 

Defini t ion 1.6. We call "topos" the elements of the orthonormal 
sequence {q~k} in L2(X) (spatial modes) and "chronos" those of the 
sequence {Oh} in LZ(T) (temporal modes). 

Proof of Theorem 1.5. (This is a classical demonstration in the 
theory of functional analysis of operators; see, for example, Kato(37)). Since 
L = U*U is a nonnegative operator, compact in L2(X), it has nonnegative 
eigenvalues and its spectral decomposition can be written in the form 

L= U ' U =  ~ ~( . ,  Oh)Oh (1.6) 
k = l  

where the functions (Pk are orthonormal: 

(q)k, ~ol) = 6k, t" 

[The parentheses refer to the scalar product in L2(X).] 
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It immediately follows that the functions ~0k are the eigenfunctions of 
the operator L = U * U  associated with the eigenvalues c~: 

L~o k = U , U~o k 2 =c~kq~ k with ~1>~e2~>. . ->0  (1.7) 

If we introduce the set of functions 

~lk--~klU~ok (1.8) 

it is trivial to show that the functions ~k are orthonormal in L2(T): 

(~k, 0,) = ~kl~71(U~k, U~,) 

= ~ ; l a 7 1 ( U * U ~ k ,  ~t) 

= c~ka~l(q)k ,  ~ot) 

~k, 1 
Let us now show that 

U =  ~ ek(', ~0k)Ok (1.9) 
k = l  

Since the functions {q~k} are orthonormal as well as the functions {Oh} 
2 tends to zero as k tends to infinity, the series and the eigenvalue series ek 

in the right-hand side of (1.9) converges in norm and it suffices to show 
that its sum is equal to the operator U for a total set of vectors in L2(X), 
that is, a set of functions whose linear combinations are dense in L2(X). We 
can choose such a total set {~0;} as the set of the functions {~0k} to which 
we add an orthonormal basis {~0~} of K e r ( U ) = { ~ o ~ L 2 ( X ) ,  U~p=0}. 
Equation (1.9) can then be easily shown, using the definition (1.8) of the 
functions ~b k and the following orthogonality: 

Vk, j (~0k, ~ )  = 0 

Finally, Theorem" 1.5 is simply the result of a kernel identification since, on 
the one hand, we have 

k = l  

and on the other hand, we can use the definition of the operator U (see 
Section 1.1). In the following, we will refer to (1.5) as the "biorthogonal 
decomposition." 
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Remark that if U is not compact, and in particular if it has a con- 
tinuous component in the spectrum, an analogous spectral analysis can, in 
principle, also be performed, but it is much more difficult to realize in prac- 
tice. However, in special situations, it is a usual tool as it is indeed the case 
for a homogeneous or stationary signal for which the Fourier spectrum 
coincides with the spectral decomposition of the operator U. The notion of 
discrete topos and chronos can only be recovered in an approximation 
sense using the Weyl criterion, namely that for e > 0 and for c~ in the 
spectrum of U, there is a (quasi) topo q~, and a (quasi) chrono ~ such that 

and 

[I UU*4'~ - :d0~ll < 

Proposition 1.7. It is trivial to check that the functions Ok 
introduced in (1.8) are eigenfunctions of the operator R = UU* associated 
with the eigenvalues e~: 

ROk  = V V * O k  = ~ 0 k  (1.10) 

R e m a r k  1.8. When some eigenvalues e~ are degenerate, the 
associated normalized eigenfunctions are not unique, nor is the decomposi- 
tion of the signal as stated in Theorem 1.5. This, however, is not a major 
difficulty, since the subspace associated with each eigenvalue is unique and 
has a finite dimension. 

Remark 1.9. The decomposition (1.5) of the signal u(x, t) can be 
obtained similarly if the operator U is defined as U: L2(T)~L2(X) in 
(1.1). This has important consequences on the efficiency of the numerical 
computation of the eigenfunctions {~0k} and {Ok}, as we will see in 
Sections 5 and 6. 

R e m a r k 1 . 1 0 .  There has been some criticism, reported, for 
example, by Lumley, (48) that decompositions of the type of (1.5) may be 
restrictive due to the fact that they exclusively use two-point correlations. 
A trivial generalization of Proposition 1.4 together with Proposition 1.7 
shows that this is not true. The biorthogonal decomposition includes 
(space/time) correlations of higher order as well. This comes from the fact 
that, in our framework, these (higher order) correlations correspond to 
various products of the operator U and the operator U* (in a compatible 
way). For instance, the kernel of the operator UU*U is 

r3(t/x, sly)=fxfTu(x,g)u(x,s)u(y,s)dxds (1.11) 
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Now the eigenvectors, in the sense of Theorem 1.5, of such products are 
clearly the topos and chronos defined above. Only the eigenvalues change. 

P r o p o s i t i o n  1.11. Since U: L2(X)~L2(T) is a bounded, linear 
operator, there exists a positive operator V: L2(X)--, LZ(x) and a partial 
isometry G: L 2 ( X ) ~  L2(T) such that U can be decomposed in the form 

U=GV (1.12) 

This is the polar decomposition of U. While the positive operator V, also 
defined as 

v = ( u * u )  '/2 (1.13) 

can be expressed from (1.9) in terms of the eigenvalues and the topos 

V= ~ c~k(-, ~0k)q~k (1.14) 
k=l 

the partial isometry G is defined by 

Gq0k = 4' k and V~o e Ker(U), G~0=0 (1.15) 

The polar decomposition of the adjoint operator U* can be obtained 
similarly: 

U* =G*W 
with ~ (1.16) 

w =  y~ ~,(., 4',) 4', 
k=l 

It is interesting to note that V is an integral operator whose kernel 

v(x, x') = ~ c~,(p,(x) q~k(x'i (1.17) 
k = l  

can be considered as the correlation function of a purely spatial signal for 
which the "statistics" is given by the indices k of the eigenvalues and the 
eigenmodes. The (spatial) statistical signal takes the form 

~,(x) = ~ (p,(x) (1.18) 

Similarly, we can define a temporal "statistical" signal 

~,(t) = ~ 4',(t) (1.19) 
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whose correlation is the kernel of W, given explicitly by 

w(t, t ' )=  ~ ~k0~(t) ~b~(t') (1.20) 
k - - 1  

It is remarkable to notice that although Theorem 1.5 ~ leads to a spatio- 
temporal decomposition of the signal in which spatial and temporal modes 
are intrinsically coupled (they have the same eigenvalues), it is also 
possible to separate the spatial and temporal information by the method 
exposed here. We thus recover uniquely spatial structures of the flow t~k(x ) 
(perhaps the eddies effectively observed) and uniquely temporal structures 
~( t ) .  In the following, we will refer to the product ~k(x)~( t )  as a 
(spatiotemporal) "structure." It represents one term in the biorthogonal 
decomposition ( 1.5 ). 

T h e o r e m  1.12. We now rewrite (1.9) in the following way: 

U =  ~ ak(', ~Ok)Ok+ ~ e~(',~Ok)~hk (1.21) 
k = l  k = n + l  

The norm of the second term, which can be considered as the error in a 
Galerkin approximation, is smaller than the smallest eigenvalue of the first 
term. 

Proof. For all integer p, we can write 

E 
k =  I k = n + l  

P 

k = n + l  

and thus 

ek(',~Ok)0k ~<~,+1 with e , + 0  if n ~ m  (1.22) 
k = n + l  

This implies that, in a Galerkin approximation where U is replaced by the 
truncated sum 

U ,=  ~ ek(', q~k)0k (1.23) 
k = l  

the error is smaller than the first neglected eigenvalue ~, + ~. 
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T h e o r e m  1.13. If the signal is in LI(Xx T), a decomposition of the 
temporally centered signal is given by the biorthogonal decomposition of 
the original signal with temporally centered chronos suitably renormalized. 
Similarly, a decomposition of the spatially centered signal is given by the 
biorthogonal decomposition of the original signal with spatially centered 
topos also suitably renormalized. 

Remark that since ( U ) t  and ( U ) x  are constant operators, they are 
bounded if T and X are of bounded measure. In a more general context, 
they can be considered as unbounded operators (with a dense domain). 

This 'has important consequences in turbulence in which a Reynolds 
decomposition is often applied. When this is the case, the signal is 
decomposed into a mean and a "fluctuation" and one is interested in 
decomposing the fluctuation only. Structures of the fluctuation are often 
called "coherent structures" by the turbulence community; these are the 
characteristic structures of the turbulent flow, once the mean has been 
extracted. In shear flow turbulence (in which there is a nonzero mean 
velocity gradient), big eddies (the largest structures of the fluctuating flow 
field) extract their energy from the mean flow and transfer it to smaller 
eddies or finer structures. When the average is a temporal average (as in 
most experiments), the signal is temporally centered; when the average is 
a spatial average (as in most numerical simulations), the signal is spatially 
centered. In homogeneous, stationary turbulence, a hypothesis of ergodicity 
is applied (twice) and these two averages are assumed to be identical. This, 
however, is not a general situation and is not assumed in our case. 

ProoL We define the spatial average of q~ as 

V~0 e L'(X), Ex((p)=fxCP(x)dx (1.24) 

and the temporal average of ~ as 

Vr eL'(T), f,(r162 
Similarly, we define a temporal average of the signal u(x, t), 

(1.25) 

(u)t(x)=frU(X, t) dt 

We now consider the time-averaged operator 

(1.26) 

(U)t: L2(X)-~ L2(T) 
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such that 

(< g>,~)(t)= fx <u >,(x) ~o(x)dx 

which is a constant operator. We then have 

E,(<U>,,p)= <U>/p 

which leads to the relation 

Vq~ ~ L2(X), 

Similarly, 

E , ( ( u -  < u > , ) ~ ) = o  

695 

(1.27) 

(1.28) 

(1.29) 

u(x, t ) -  (u(x, t)>x = ~ ~kq~k(X)- Ex(q~k(X)) Ok(t) (1.35) 
k = l  

~k ~pk(x) [0k(t) - E,(Ok(t))] (1.34) 

and 

U* - <U*>~ = 
k = l  

Decompositions of the centered 
become 

u(x, t ) -  <u(x, t )>,= 
k = l  

~k(., 0k)[~ok - Ex(~ok)] (1.33) 

(or fluctuating) signals immediately 

v0 ~L2(T), E x ( ( U * -  < U * > x ) 0 ) = 0  (1.30) 

Using (1.26) and (1.27) and the biorthogonal decomposition (1.5), we get 
a decomposition of the temporal average of the operator U: 

< v>,~o(t) = f~ f~ "(x' t/~o(x) dx d, 

= ~ ~k(~, ~ok) E,(0~) (1.31) 
k = l  

as well as a decomposition of the temporal fluctuation of U: 

U -  <U>,= ~ ~k(', ~0k)[~k--E,(0k)] (1.32) 
k = l  

Similarly, we can write a decomposition of the spatial fluctuation of U: 
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Finally, since 

and similarly 

[1~9~ - Et(Ok)tl 2 = 1 -- E,(Ok) 2 (1.36) 

Ilqok - Ex(qOk)ll 2 = 1 -- Ex(qOk) 2 (1.37) 

we note that the eigenvalues are multiplied by the factor I 1 -  E,(0k)2] ~/2 
for a temporally centered signal and the factor [1-- Ex(q)k)2] 1/2 for a 
spatially centered signal. A specific case, however, arises when the eigen- 
function is equal to its average: this occurs when the mean appears as an 
eigenfunction which is then a constant. In this case the corresponding 
eigenvalue is zero, although it was different from zero in the decomposition 
of the original signal. 

R e m a r k  1.14. The decompositions given by Theorem 1.13 for a 
temporally or spatially centered signal are not biorthogonal, namely the 
sequence of centered chronos in Eq. (1.34) is not orthogonal in L2(T) and 
the sequence of centered topos in Eq. (1.35) is not orthogonal in L2(X). 
In other words, decomposition (1.32) does not correspond to the 
biorthogonal decomposition of the operator U - ( U ) t  and similarly 
decomposition (1.33) does not coincide with the biorthogonal decomposi- 
tion of the operator U - ( U ) x .  The relation between the biorthogonal 
decomposition of U and that of U - ( U ) x  (or U - ( U ) t )  is rather 
complex and is not given here. From our viewpoint, indeed it is not natural 
to center the signal, since each topo and chrono has its own mean: taking 
the mean of the topos is equivalent to introducing an artificial correlation 
among them equal to -Ex(q~k)Ex(q~) for all pairs (q~k, ~0t). Similarly, 
centering the chronos introduces a correlation --E,(0k)E,(Ot).  Note that 
the use of Fourier analysis has made centering a straightforward and 
natural operation, since there the mean is simply a component of the 
decomposition. This is not the case for other expansions, such as the 
biorthogonal decomposition studied here (except in special cases). 
Although it is often common practice in turbulence and other fields, a 
centering operation should thus be carried out carefully with respect to the 
biorthogonal decomposition. 

Proposition 1.15. Let us now suppose that the signal is vectorial. 
This is indeed often the case in hydrodynamics when the signal is, for 
example, the velocity, the vorticity, or other vector field such as the 3 
components of the velocity and the temperature, etc. Then, we have 

V(x, t )~Xx T, u(x, t)ER d with d =  1, 2, 3 .... (1.38) 
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Of course, the case d =  1 follows the previous analysis. The case d >  1 
requires a slight generalization. For this, we consider the operator 

U: L2(X, R a)-~ L2(T) 

such that 

d 

V~oeLz(X, Rd), ( V ~ ) ( t ) =  ~ Ixui(x, t)(&(x)dx (1.39) 
i = 1  

where a~ denotes the ith component of the vector a. 
The generalization is straightforward if one uses the canonical scalar 

product in L2(X, Rd): 

d 

(qJ, r ~ fx~o,(x) ~(x) dx (1.40) 
i = 1  

for which we could have also used tensor notation. 
As in Proposition 1.1, we can define the conjugate operator U*: 

U*: L2(T) ~L2(X,  R a) 

such that 

V~ ~ LZ(T), (U*~),(x)=fvUi(X,t)tp(t)dt (1.41) 

It is trivial to show, using (1.23) and (1.24), that U* is the adjoint operator 
of U, i.e., 

(0, U~) = (U*O, ~) (1.42) 

As in Proposition 1.4, the operator R = UU* defined in L2(T) is an integral 
operator whose kernel is the temporal correlation of the signal (the proof 
is similar to that given in Proposition 1.4) and the operator L =  U*U 
defined in L2(X, R e) is the integral operator whose kernel is the (tensorial) 
spatial correlation of the signal. This can be explicitly written in the 
following way: 

(u*uq,)j = f~ (u~)(t) uj(x, t) & 

d 

= E fx f u,(y,t) u,(x,t)cpi(y)dydt 
i = 1  T 

(1.43) 
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Thus, the element (i, j)  of the matrix [U*U]~ is defined by the kernel 

frui(x, t)uj(y, t)dt (1.44) 

which is indeed the 'spatial two-point correlation of the signal. 
Finally, as in Theorem 1.5, we can write the (spatiotemporal) decom- 

position of the signal: 

u,(x, t) = ~ ~k~x(t) ~p~(x) (1.45) 
k=l 

2. SPACE-TIME CHARACTERISTICS OF THE SIGNAL 

As is well known, chaos is characterized by sensitivity to initial condi- 
tions and a fractal structure. Quantification of these properties for temporal 
strange attractors has been achieved by determining the fractal dimension 
of the attractor, its entropy (or degree of chaos), and the Liapunov 
exponents, which give information on the local stability of the attractor. 
There are, however, different ways to approximate the dimension (29'35) and 
to define the entropy (for instance, Kolmogorov-Sinai entropy). The 
connection between the various definitions is not quite clear yet. 

We propose to relate the properties of the spatiotemporal regular and 
chaotic behavior of the system and its various transitions with quantities 
extracted from biorthogonal decomposition (1.5). Characteristic quantities 
of a given signal are of three types: energies, entropies, and dimension. 
Since the signal carries both spatial and temporal information, global 
functions which are representative of space and time are introduced. We 
also define an energy and an entropy which are only temporal or spatial. 
The dimension, hov0ever, is necessarily a global quantity. 

Since this biorthogonal expansion (1.5) is valid for a deterministic 
signal of any kind, ordered or disordered, laminar or turbulent, the 
following description of the signal can be applied to a nonchaotic or 
chaotic state. This is particularly appropriate to the study of transition and 
fully turbulent flows which undergo various instabilities. 

2.1. SIGNAL ENERGIES 

2.1.1. Global Energy 

Proposition 2.1. The global energy of the signal given by the 
square of the norm of the signal in L2(X• T) is equal to the sum of the 
eigenvalues of decomposition (1.5): 

g(bl) = JX ~ fT ld(x' t) u(x' t) dx dt-~ k ~'= 1 0~2 (2.1) 
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It follows that the energy of a structure is simply given by its eigenvalue. 
Note that E(u) can be expressed in terms of the operator U and its adjoint: 
E(u) = Tr (g*  U) = Tr(UU*). 

Proof. The derivation of (2.1) is straightforward from decomposition 
(1.5) and the orthogonality of the topos and that of the chronos. 

Note that if the signal is the velocity field, the energy becomes the 
kinetic energy of the flow (in a generalized sense, since the flow is not 
necessarily statistically stationary), which is also the sum of the eigen- 
values: 

3 

i = 1  T k = l  

Again, E(u) can be expressed in terms of the operator U and its 
adjoint: E(u)---Tr(U*U)=Tr(UU*).  Space-time structures participate 
independently in the kinetic energy of the f l O W .  (45~7)  This is completely 
consistent with the classical conception of turbulence in which eddies of 
different sizes contain a certain amount of kinetic energy (see, for example, 
Kolmogorov (4t) for a description of isotropic, homogeneous turbulence). 

2.1.2. Spatial Energy 

The spatial energy of the signal which evolves in Definition 2.2. 
time is 

~o 
u(x, t) u(x, t) dx )_2 = ~kl~ 'k( t) l  (2.3) 2 2 

k = l  

The proof is similar to that of the previous proposition. This time- 
dependent function, in which the spatial information of the signal has been 
integrated, should be useful to study temporal intermittency as it occurs in 
many transition and turbulent flows, the most characteristic one perhaps 
being the bursting event near a wall. 

2.1.3. Temporal Energy 

D e f i n i t i o n  2.3. In the same way in which we introduced a spatial 
energy, we now define a temporal energy of the signal which spatially 
evolves: 

~ u(x, t)u(x, t)dt= ~ c~[q~(x)] 2 (2.4) 
o 7 . k = l  

This definition should be characteristic of the (temporal) energetic content 
of the signal and its spatial distribution. The different regions of the flow 
can then be classified on an energy criterion. 
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2.1.4. Robustness of the Global Energy for a Discretized 
Signal. 

We now investigate the robustness of the notion of global energy when 
the sets X and (or) T (as defined in Section 1) consist(s) of a finite number 
of points, as is often the case for experimental or numerical signals. More 
specifically, the question is how the addition of one point in X or T affects 
the global energy of the signal. Note that the extra point can be inserted 
either in between the original points or at the beginning or at the end of 
the series. 

Here, the original signal u(x, t) is defined in the discretized sets X 
and T, which can be explicitly written as J ( = { x l , x 2  ..... xn} and 
7"= {tl, t2,..., tin}. 

Let us now consider the new set: 

x ' = x u  {xn+i} (2.5) 

if we add a spatial location, or 

r ' =  rk..) {gm+l} (2.6) 

if we add a point in time. 
In the following, we assume that we add a spatial point, so that the 

new signal fi(x, t) is a function of L 2 ( 2 x  i?) such that 2 = J r '  and i?= T. 
Since there is complete space-time symmetry, the analysis is the same if one 
point in time is added instead, in which case we have X =  X and if"= T'. 
The new signal fi satisfies 

Vt, Vx ~ X, (~(x, t) = u(x, t) (2.7) 

and the values ~}(xn+l, t) at the extra point are determined by the extra 
measurements. 

Proposition 2.4. The new signal energy E(fi) satisfies 

E(u) + s ~ <~ E(h) <~ r + E(u) (2.8) 

~2 and .2 where E(u) is the global energy of the signal u and c~1 c~d+ 1 are the first 
and last nonzero eigenvalues in the decomposition of the new signal. 

Proof. Relation (2.7) between the original and the new signal implies 

gi, j<~n, gl~=a~ (2.9) 

where A = {a0.} denotes the n x n matrix U*U and .4 = {d0. } the (n + 1)x 
(n + 1) matrix U*U. The (global) energy of the original signal and the new 
signal are the traces of the matrices A and A, respectively. 
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Using the Courant minimax theorem, we can obtain order relations 
between the eigenvalues e2 = 2k of A and ~2 2 = 2k of ~i (all being counted 
with their multiplicity): 

if d is the number of nonzero eigenvalues of the matrix A, then 

(2.10) 

2 a r  and Vk>~d+l, 2k=0 (2.11) 

and consequently, using (2.10), 

,~dr and Vk~>d+2, ,~k=0 (2.12) 

Combining (2.10) and (2. 12), we get 

d + l  d 
"~k~<Tr(A)~ < ~ '~k (2.13) 

k = 2  k = l  

where 
d 

Tr(A)= ~ 2k 
k = l  

It then immediately follows that 

Tr(A) + '{d+l ~< Tr(A) ~< )~1 + Tr(A) 

or equivalently 

E(u) .-}- ~ d + l  ~ E(/,1) ~ "~1 "1- E(u) 

as previously stated. 

(2.14) 

(2.15) 

2.2. Signal Entropies 

Another characteristic parameter of the signal is its degree of order or 
disorder. It is then natural to define the corresponding entropy. As for the 
energy, we define a global, a temporal, and a spatial entropy. 

2.2.1. Global Entropy 

We first define a global quantity characterizing the full space-time 
structure of the signal. 

Defini t ion 2.5. 
structure be 

Letting the normalized or relative energy of each 

(2.16) 
t k = l  
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the expression of the global entropy of the space-time signal is 

1 u 
H(u) = -!im~v~ l o ~  Z Pk log Pk (2.t7) 

k = l  

We introduce the normalizing factor (log N) -~ in order to perform 
comparisons between different signal entropies. H(u) is zero if and only if 
only one eigenvalue is nonzero, i.e., all the signal energy is concentrated in 
the first structure. As usual, in the opposite case, if all the eigenvalues are 
equal, i.e., the energy is equidistributed among the structures, then H(u) 
takes its maximum value, namely 1. At intermediate states, H(u) keeps 
increasing as the energy spreads out uniformly on the eigenvalues. This 
function will be useful in hydrodynamics for a quantitative description of 
the increasing degree of complexity as the Reynolds number (or another 
dimensionless parameter characteristic of the system such as the Rayleigh 
number or an aspect ratio) gets higher and higher and the flow evolves 
toward a fully developed turbulent state and even beyond. 

2.2.2. Spatial Entropy 

We define a spatial entropy representative of the degree of order of the 
spatial component of the signal, which of course evolves in time. 

Definition 2.6. Letting 

/ oO 

pk(t) = ~k 10k( t ) l /~  c~k 10k(t)[ (2.18) 
/k= = 1  

the spatial entropy is 

1 u 
I(t)= --Nlim~ ~ log Nk~l= pk(t)logpk(t) (2.19) 

AS the spatial energy, this function should be particularly interesting in 
strongly intermittent events in which complex behavior alternates with 
more regular periods. 

2.2:3. Temporal Entropy 

We define a temporal entropy of the signal which represents the degree 
of order of the spatial component of the signal, which of course changes 
from point to point in space. 

D e f i n i t i o n  2.7. Letting 

p*(x) = ~k I~0~(x)l ~ [~pk(x)l (2.20) 
k 1 
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the temporal entropy is 

1 N 
I*(x) = - lim ~ p~(x)log p~(x) (2.21) 

N ~ oo l ~ g  N k =  1 

This definition should be useful to evaluate the distribution of "disorder" in 
the various flow domains. 

2.3. Dimension of the Signal 

2.3.1. Connect ion w i th  the Number  of Structures 

Proposit ion 2.8. The operator U (corresponding to the signal u) 
realizes an isomorphism between 

z(X) = Ran(U*) c L2(X) 

and 

(2.22) 

z(T) = Ran(U) c L2(T) (2.23) 

where Ran(U) and Ran(U*) denote the closure of Ran(U) and Ran(U*), 
respectively. 

Def in i t i on  2.9. We then define the characteristic dimension of the 
signal, dim(u), as the common dimension of z(X) and z(T). 

Proof o1" Proposition 2.8. Again, this is a classical piece of linear 
analysis. (37) Let us first remark, for further use, that if we write 

Ker(U) = {~0 ~ LR(x), Ucp = 0} (2.24) 

so that 

z(X) = Ker(U) ~ (2.25) 

)~(X) • = Ker(U* U) = Ran(U*) • = R a n ( U ' U )  • (2.26) 

then we get 

and similarly 

z(T) • = Ker(UU*) = Ran(U) • = Ran(UU*) • (2.27) 

It immediately follows that 

L2(X) = Ker(U) G z(X) (2.28) 

822/64/3-4-15 
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and 

L2(T) = Ker( U* ) | •(T) (2.29) 

Finally, we can write the straightforward relations between 7~(X) and )~(T): 

UZ( X) = Z(T) 
(2.30) 

U*z(T) = z(X) 

and we will see in more detail in Section 3 that dim(u) is indeed the 
number of degrees of freedom of the signal u(x, t). 

2.3.2. Robustness of the Dimension for a Discretized 
Signal 

Here we turn to the question of the robustness of the dimension of the 
signal when X and (or) T are (is) discretized and one point of measurement 
(in space or time) is added to the signal. 

It is clear that the dimensions of L2(X) and L2(T) [respectively called 
dim(X) and dim(T)]  are not necessarily the same. Typically, the number 
of times is larger than the number of spatial locations in an experiment and 
vice versa in a numerical simulation of turbulence in which time integra- 
tions are costly. In any case, the dimensions have to be sufficiently large so 
that the signal contains relevant space and time scales. In a fully developed 
turbulent flow (see, e.g., Tennekes and Lumley(6S)), the largest scale must 
be of the order of the most energetic eddies (often called the energy- 
containing scale or integral scale) and the smallest scale must be as small 
as the Kolmogorov scale at which energy dissipation occurs (unless one 
wants to pursue a local study). Letting n and m be dim(X) and dim(T), 
respectively, the number of nonzero eigenvalues (and thus the signal 
dimension) is necessarily smaller than or equal to the smallest of the two 
numbers m and n, that is, inf(m, n). In the case where one of these numbers 
is much larger than the other one, adding a point to the largest number has 
no or a minor effect on the dimension. 

We use here the notations and hypotheses introduced in Section 2.4. In 
particular, we assume that the new signal fi includes one extra spatial point 
compared with the original signal u and that the number of nonzero eigen- 
values is d in the original signal. Then (2.11) and (2.12) imply 

2a r  2d+1 = 0 (2.31) 

and 

~d~0, ~d+2=0 (2.32) 
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There is, however, no information concerning 3.a+ 1 . This eigenvalue can be 
zero, in which case the  dimension of the new signal fi equals that of the 
original signal u: 

dim(t~) = dim(u), or equivalently dim Ker(A) = dim K e r ( A ) -  1 (2.33) 
/ 

Otherwise, the dimension of the new signal will be larger than that of the 
original signal by one: 

d im( f i )=d im(u)+  1, or equivalently d i m K e r ( A ) = d i m K e r ( A )  (2.34) 

We now completely define the matrix 0 * 0 = J ,  which can be written in 
terms of the matrix A with an extra row and extra column: 

Vi<~n, Vj<~n, gto=aij 

Vj~I'I, (In+l,j=(lj, n+l=Vj ( 2 . 3 5 )  

I~n + 1,n + 1 = a  

where v of R = is the vector consisting of the first n elements of the last 
column of the matrix J and a is the (n + 1)th element. 

These elements are the only part of A depending upon the measure- 
ment at the new spatial point. 

We now show how the case (2.33) is a particular situation. 

Proposition2.10. The addition of one spatial point has no effect 
on the characteristic dimension if and only if v Ez(X) and a =  
(v, (U*U)- lv ) ,  where (U'U)  -1 stands for the inverse of the restriction of 
(U'U) to z(X). The addition of one time step can be treated exact in the 
same way. 

Proof. Let us keep the previous notation: U*U=A and 0 * 0 = A  
and consider a vector q in Ker(A): 

Aq = 0  (2.36) 

Letting the element of R" whose components are the first n components of 
q be the vector { and the last component of q be x ( x = r / , + l ) ,  Eq. (2.36) 
can be written in the form of one vectorial and one scalar equation: 

A ~ + x v = 0  
(2.37) 

(v, { ) + a x = 0  

Also note that 

L2(X) = Ker(A ) | Ran(A) | C (2.38) 

822/64/3-4-15 * 
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Now suppose that dim(u)=dim(fi).  Then, since Ker(A)@ {0} c Ker(A), by 
(2.36) there exists 11 e Ker(A) such that q = { | x and { e Ran(A)=  z(X). 
Since A { # 0, we can conclude, using the first equation of (2.37), that x # 0 
and v = - ( l / x ) A t  and therefore v E z(X). Finally, since by Proposition 2.8 
the matrix A is invertible on z(X), we have { = - x A - I v .  The second 
condition of the proposition immediately follows from the second equation 
of (2.37). 

Conversely, if v ~ z(X), we take x = 1 and define ~ = - A  Iv so that 
the first equation of (2.37) is satisfied. Since the second one can also be 
easily checked, we get q = ~ | 1 ~ Ker(.~) and the proposition follows. 

R e m a r k  2.11. If, under the condition of Proposition 2.10, we write 

d 

V~- 2 ~i{~i ( 2 . 3 9 )  
i = l  

where the vectors ~i are the topos relative to U--note  that in principle 
t/i r v j~the  remaining condition becomes 

L t/i2 (2.40) 
a =  ~2 

i = l  

This shows, as expected, that the condition in the proposition tells us that 
the new measurement does not introduce any new information. 

Finally, we would like to mention that it is possible to introduce a 
relative dimension defined as 

dim(u) 
6, (2.41) 

n 

which accounts for the fraction of the effective number of degrees of 
freedom. Unfortunately, in view of the previous proposition, and since 

the existence of a limit of fin 
properties. 

d d d + l  
- - < - < - -  
n + t  n n + l  

as n goes to infinity cannot follow from general 

Proposition 2.12. In the case where d i m @ ) = d i m ( u ) +  1, the 
relative energy that is taken by the extra degree of freedom is bounded by 

a 
Pa+ 1 <~ E(~) (2.42) 

where Pk has been defined in (2.16). 
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Proof. We first notice that 

Yr(A) = Yr(A) + a or 

Then Eq. (2.15) yields 

a~>~2+1 

from which the proposition follows from Proposition 2.4. 

Remark 2.13. 
at xn+l 

E(~)=E(u)+a (2.43) 

(2.44) 

If we assume that the time mean energy of the signal 

a=~ lu (xn+l ,  t)l 2 (2.45) 
t 

is of order of the (time) mean of the energy evaluated at the other points 
xl ,  x2,..., xn, then the right-hand side of (2.42) is of the order 1/(n + 1). We 
can thus conclude that even if the dimension increases by one when one 
point gets added in X or T, the (normalized) energy supported by this new 
direction in phase space becomes very small as n increases. 

3. DECOMPOSITION AND D Y N A M I C S  

In this section, we establish the connection between the biorthogonal 
decomposition and the properties 'of the underlying dynamical system. The 
following analysis is applicable in the general context of any spatio- 
temporal signal as was introduced in Sections 1 and 2. We, however, use 
a terminology where u describes phase space motion (such as the position, 
velocity, momentum, etc., of a given system) in a time asymptotic regime, 
that is, after the transient. 

3.1. Characteristic Space 

At each time point t ~ T, the signal u defines a function of x ~ X defined 
as 

VxeX, L(x)=u(x, t) (3.1) 

As time t is running, ~, is an orbit of the system which has produced the 
signal u. Let us suppose that ~-t e L2(X). (It is also possible to handle much 
more general cases.) In this case, L2(X) is the phase space of the system. 
We are going to show that the biorthogonal decomposition permits 
localization of the dynamics in the  phase space in two ways. First, we 
find a Euclidean subspace x (X)~  Lz(x) with a dimension equal to the 
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characteristic dimension introduced in Section 2, dim(u), such that the 
orbit 4, never leaves )~(X). We will also show that )~(X) is minimal for this 
property, namely there is no other Euclidean subspace of dimension strictly 
less than dim(u) which contains the dynamics. Second, it is possible to find 
bounded regions of x(X) in which the system spends most of the time. In 
other words, the biorthogonal decomposition permits a description of the 
dynamics in a (characteristic) subspace of the phase space with a presence 
density concentrated in a bounded region. 

As already initroduced in Eq. (2.25), we take )~(X) as 

x(X) = Ker(U) • with dim z(X) = dim(u) (3.2) 

P r o p o s i t i o n  3.1. z(X) is the closed linear span of the family of 
vectors 4, e Lz(x). 

Proof. Since all topas q~k belong to )~(X), Theorem 1.5 implies that 
4, ~ x(X) for all t (more precisely, for almost all t with respect to Lebesgue 
measure if T is a continuum). Conversely, we want to show that 
)~(X) c {4,}, where {4,} denotes the (closed) linear span of the vectors 4, 
or equivalently that 

{4,} • c z(X) • = Ker(U) (3.3) 

Let us take 4eL2(X)  and i t  {4,} • Then, we can write 

(u4)(t) = Ix u(x, t) 4(x) ax 

=(4.4) 
= 0  (3.4) 

Therefore, ~ ~ Ker(U) and the proposition follows. The characteristic space 
z(X) is thus the minimal Euclidean embedding of the dynamics in L2(X). 

Let us now localize the orbit 4, inside x(X). For a bounded region 
Vc)~(X), it is natural to define the mean time of the presence of 4, in V 
a s  

z(V) = lim ~v(~,) dt (3.5) 

where ~ v is the characteristic function of V ("characteristic" in the mathe- 
matical sense, namely 1 or 0 whether the variable belongs to V or not). 
This is the normalized measure of Section 2. We are particularly interested 
in the case where V is a ball of radius r: 

Br = {4 ez(X):  141 ~ r }  (3.6) 
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or a cylinder: 

C(r; k~, k2,..., k~) = ~ e z(X): ~< r (3.7) 
i 1 

where the ~k are the coordinates of ~ with respect to the topos ~ok. 

P r o p o s i t i o n  3.2. If the signal u is centered (see Section 2), then, 
for each positive real r, we have 

"C(Br) ~ 1 -- ~ g(bl) ( 3 . 8 )  
r- 

where E(u) is the global energy of Section 2.11. 
It then suffices to choose r to localize the orbit with great accuracy. 

ProoL The proof is similar to that of the Chebyshev inequality, since 
E(u) can be viewed from (2.1) as the variance of ~t with respect to the 
measure defined by (3.5). 

Remark 3.3. Exactly in the same way, we see that 

1 1 
-7  

and therefore ~ defined as 

(3.9) 

(3.10) 

remains within some bounded domain for a large part of the time. An even 
better approximation can be achieved by using the Kolmogorov theorem 
(see, e.g., Gnedenko(27)), since, from Theorem 1.5, the coordinates ~ can 
be considered as a sequence of independent random vectors. Therefore, for 
every subset of coordinates defined by indices {kl, k2,..., kt}, we can write 

1 
kl ,  k2 ..... k,))/> 1 - 7  (3.11) 

ki 

3.2. Spatial Structure 

The analysis of the spatial complexity of the system can be undertaken 
by considering, at each point x e X, the time evolution of the local signal 

tlx ~ L2(T) (3.12) 
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defined in the same way as 4, in (3.1). Using the space-time symmetry of 
Section 2, it is easy to rephrase Proposition 3.1 and 3.2. The equivalent 
space z ( T ) c  L2(T) is then the characteristic space of all (temporal) signals 
detected at each spatial point. The statement corresponding to Remark 3.3 
localizes the sites moving in a coherent way (synchronous to each chrono). 
The profs are exactly the same as those given above. Notice that the linear 
dependence in this space of r/x for different x e X has the usual meaning of 
mutual correlated motions. 

3.3. Asymptotic and Ergodic Properties 

If, instead of an isolated space-time signal, we consider different 
realizations of the flow in an experiment or different initial conditions in a 
numerical simulation, it is natural to define a statistical signal as {uo~(x, t)} 
in which co is a random event taken in a space f2. It is clear that we can 
consider time translations on f2 defined as 

u+(o,)(x, t) = uo,(x, t - ~), ~ ~ r (3.13) 

For  experimental data, (3.13) simply means a change of initial time 
and for a dynamical system a change of origin of the time coordinate. It is 
then natural to suppose that some statistical average (i.e., a probability 
measure) on ~ is given, and since we are interested in time asymptotic 
properties, the statistical average must be time invariant. Note that this is 
in essence different from the situation where the statistical average is 
directly the time average, because in general the time action (3.13) on f2 is 
far from being ergodic. In such cases, ~2 can be decomposed in invariant, 
two-by-two disjoint pieces, on which the average measure is indeed ergodic 
(see, e.g., Cornfeld et  a/.(21)). Since it is clear that all the notions introduced 
in the previous sections are measurable functions of uo~, and therefore of 
co e (2, they ought to be constant on each ergodic component of g2 if they 
are considered in a time asymptotic regime (i.e., if t ~ oo is introduced in 
the definitions of Section 2). Such is the case of the energies, the chronos, 
and the topos as well as the characteristic dimension and entropy. 

Then in the study of a statistical space-time signal, all we need is the 
control of the deviation from the total average: 

~o(x, t ) = u ~ , ( x ,  t ) -  (uoXx,  t) ) ~  (3.14) 

where the ensemble average (.)o~ is given by the invariant measure on ~2. 
For instance, the Reynolds average in turbulence can be viewed as such a 
measure. However, using the convex decomposition of an invariant 
measure in ergodic components, the analysis can simply be carried out by 
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putting together the different ergodic parts. From a practical point of view, 
since the ergodic components are not known in general, the signal can be 
studied by means of all the moments of the distributions relative to each 
quantity introduced so far. Note that the biorthogonal decomposition 
~7~(x, t) can be viewed as the spectral analysis of Uo~ as in Section 1 and 
since, according to (3.4), we have D~o= U ~ - ( U , o > o ,  all studies can be 
performed in terms of the well-known perturbation theory of linear 
operators. 

Moreover, it is well known that the dynamics of dissipative dynamical 
systems may converge to one or more attractors. In many cases (see Babin 
et al. (7) and T6mam (67) for examples), there is a maximal (global) finite- 
dimensional a t t ractor-- the largest bounded invariant set--for which the 
Hausdorff dimension can be estimated. This has been shown for various 
partial differential equations such as the two-dimensional Navier-Stokes 
equations and for general vector fields in Hilbert space with a compact 
invariant subset. (5~ When there indeed exists an attractor on which lies 
the signal u(x, t), in certain circumstances (among which ergodicity), it is 
contained in the characteristic space z(X) and therefore its dimension is 
less than or equal to the characteristic dimension dim(u) defined in the 
previous section. Under the same hypotheses, we conjecture that inertial 
manifolds--that is, finite-dimensional, exponentially attracting, positively 
invariant Lipschitz manifolds (see, e.g., Foias et al.(Zs))--ought to be con- 
tained in z(X) and therefore the method can be used as a (flat) inertial 
manifold approximation. 

Remark 3.4. Since Proposition 3.1 provides an embedding of the 
dynamics of L2(X) in z(X), we may want to compare this embedding with 
the embedding of attractors from time series. 

Recall that it is possible to embed times series obtained from a numeri- 
cal or experimental scalar signal in a "state" space of finite dimension dE. 
This can be done, for instance, by a time delay method. In some cases, de 
can be estimated or at least an upper bound can be found (66) and it turns 
out that, if the dimension of the underlying attractor is ~c, this bound is 
2 x +  1. Therefore, in principle, R 2~+1 which contains the time series 
delayed vector as an embedding. To be more precise, this result needs the 
compactness and finite dimensionality of some smooth invariant manifold 
containing the attractor and, as in our case, x needs to be understood as 
the (integer) dimension of this manifold. Comparing Proposition 3.1 and 
the embedding theorem for time series, we see that the main difference is 
the following. In our case, we start within a given phase space [L2(X)],  
whereas in the other case, the construction of this space has to be 
performed by finding a "state" space diffeomorphic to a part of the phase 
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space. Therefore, it is possible to connect our result to the embeddings of 
attractors by searching for general conditions so that 2~c + 1 is indeed an 
upper bound for dim(u). However, we would like to stress the fact that the 
two problems are in essence different and thus this connection can be made 
only under very special assumptions concerning the relation between phase 
space and "state" space, the reason being that in our case we deal with 
linear subspaces of L2(X) and the morphism between the phase space and 
the "state" spaces is not necessarily linear. However, if this is indeed the 
case, then 2~: + 1 is effectively an upper bound for dim(u). Thus, we get the 
following bounds for the characteristic dimension: 

~c ~< dim(u) ~ 2~c + 1 (3.15) 

In general the (global) attractor may carry different ergodic measures 
and therefore comparing the properties of the biorthogonal decomposition 
with the quantities related to such measures such as Kolmogorov-Sinai 
entropy and Liapunov exponents for example is a hard task. The main 
difficulty is that, as mentioned earlier, the properties of the biorthogonal 
decomposition as well as the ergodic invariants strongly depend on the 
ergodic component of ~2 where the initial condition stands. Nevertheless, 
we can think that the selection of the ergodic component where the 
computation is carried out (or the experiment takes place) is made by the 
choice of some initial conditions. This guarantees that the analyzed signal 
corresponds to an orbit in some ergodic component. In this case, a relation 
betweefi the ergodic invariants and the biorthogonal decomposition clearly 
arises. 

We now illustrate this relation by showing how it works. If 
2 , ) 2 2 )  ""  ) 2 r  are the Liapunov exponents (relative to an ergodic 
measure p) of an attractor A, then the Liapunov dimension (35'59) is defined 
by 

1 x 
- -  ~ 2k (3.16) dimA = K +  12K+11 k=l 

i where K is the number of strictly positive #i such that #i = Z~ = 1 2~. 
The meaning of dimA can be easily understood if one plots /zi as a 

function of i; dima is then given by the abscissa of the (nontrivial) zero of 
this function, which is obtained by a linear interpolation between the last 
positive ~i and the first negative one. Now, denoting by KA the smallest 
integer greater than dima, if the latter is not an integer, it is clear that 
(KA- 1) is the maximal number of linearly independent vectors in the 
tangent space such that the volume of the hypercube they define exponen- 
tially grows in time. In the same way, KA is the minimal number of linearly 
independent vectors defining a volume which exponentially decays. In 
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other words, KA is the dimension of the (asymptotic) tangent space. If, on 
the other hand, the dynamics fills densely and smoothly some volume of 
the characteristic space z(X), as it should if the system is chaotic or 
turbulent, the tangent space of ;g(X), a linear space of dimension dim(u), is 
identified with the space just mentioned before and w~e get the following 
relation between the characteristic dimension and the Liapunov dimension: 

dim(u) = K A = [dimA] + 1 (3.17) 

where [dimA] stands for the integer part of dim A. 
Here, to be more precise, the assumption previously made on the 

"smoothly filling" dynamics is the same as in Taken's embedding 
theorem, (66) namely that there is a smooth, invariant, finite-dimensional 
manifold M which is attractive for the dynamics starting at almost every 
point outside of M .  (52) The remaining assumptions of the embedding 
theorem tell us that the manifold M needs to be open in z (X) .  

This explains the numerical results of Ciliberto and Nicolaenko (2~ in 
which both dimensions are compared for experimental results on Rayleigh- 
B6nard convection in annular geometry as well as for numerical data 
obtained from integration of the Kolmogorov-Spiegel-Sivashinsky equa- 
tion. They found that both numerically computed dimensions are indeed 
related by relation (3.17). This relation has also been found by Rodriguez 
and Sirovich (57) for the Ginzburg-Landau equation either with Neumann 
or Dirichtet boundary conditions. Notice, however, that in these computa- 
tions, dim(u) may be larger than the estimated value due to some threshold 
introduced in the energy spectrum, but then the energy supported by these 
directions ought to be very small (roughly of the order of roundoff errors). 
Accordingly, in view of Remark 3.3, the dynamics will ignore these 
directions for most of the time. We refrain from going further into other 
examples since for large dimensions (e.g., the numerical computation of 
Rayleigh-B6nard convection by Sirovich and Deane(63)), the comparison 
between our formula and numerical calculations requires an enormous 
amount of computational time in order to get reliable conclusions, since an 
extrapolation for the Liapunov spectrum cannot give the accuracy 
necessary to conclude. 

Following the same line, it is possible to relate other ergodic invariants 
with the characteristics of the previous section. Not only can the 
biorthogonal decomposition be considered as a fast algorithm to compute 
the Liapunov dimension in the case of a turbulent regime where (3.17) may 
hold, but also the difference between the characteristic dimension and the 
Liapunov dimension i~l the general case, that is, 

dim(u) - dim A (3.18) 
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can be considered as an indicator for the transition to a turbulent regime 
(in view of the previous discussion). 

3.4. Characteristic Dimension and Bifurcations 

Bifurcations generically appear when dealing with a system depending 
on a parameter, such as the Reynolds number in hydrodynamics or the 
coupling coefficient for CML. They correspond to situations where some 
properties of the dynamics suddenly change. We pass in review some of the 
most popular bifurcations (see, e.g., Guckenheimer and Holmes (32~) in 
order to present the corresponding behavior of the biorthogonal decom- 
position iia each case. This behavior, on the other hand, can be used in 
practical examples as a tool of identification of different types of 
bifurcations in cases where the complexity of the signal does not allow an 
easy interpretation as in experiments or a dynamical system with a phase 
space of large dimension. 

We first distinguish, from our point of view, two types of bifurcation: 
internal bifurcations, through which the characteristic dimension dim(u) 
does not change, and external bifurcations, through which it does change. 
Internal bifurcations correspond to a rearrangement of the dynamics in the 
characteristic space z(X). They are defined by the crossing of two or more 
energy levels of the (orthogonal) structures as the parameter varies. We 
will see in the examples of Sections 4 and 5 how the global entropy defined 
in Section 2.2.1 is a good indicator of this type of bifurcation. As is 
wellknown, this type of bifurcation corresponds to an exchange of stabililty 
in the inertial axis of the dynamics in dynamical systems theory, or to an 
exchange of energy between different eddies or "coherent structures" in 
hydrodynamics. Recall that at least in finite dimension, (37) in the case 
where U is a continuously differentiable function of the parameter in some 
interval I, so are the eigenvalues and eigenfunctions of U*U (of Section 1). 
It then makes sense to speak about the exchange of energy between 
dominant structures, since it is possible, in principle, to follow each 
structure (chrono and topo) through the bifurcation point. For infinite 
dimension, the situation is slightly more complex and the identification is 
possible only under certain conditions. We will come back to the descrip- 
tion of internal bifurcations in the examples of the following sections. 

We now illustrate the case of external bifurcations with some 
examples. 

3.4.1. Period Doubling 

A time periodic orbit of period K is defined by the K vectors of L2(X): 

41, 42 ..... ~K (3.19) 
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When these vectors are linearly independent (which generically happens), 
Z(X) is likely to have dimension K. In the other case (with the presence of 
symmetries, for example), the dimension can be decreased. This is indeed 
true for the example treated in Section4. Note that this point is 
independent of the possible complexity of each tope and chrono and it 
concerns only their number, that is, the dimension of z(X) and the linear 
independence of vectors r i =  1, 2,..., K. It immediately follows that in 
general (i.e., in generic cases), period doubling leads to an increase of the 
characteristic dimension. 

3.4.2. Supercri t ical  Hopf  Bifurcat ion 

For a centered signal, this bifurcation in which a stable limit cycle 
emerges from a fixed point, the characteristic dimension jumps from 1 (or 
0 in the particular case where the point is centered) to 3 (or 2 in the par- 
ticular case where the cycle is in a plane), since the generic embedding 
dimension of a cycle is 3. Remark that the Liapunov dimension remains 
zero through the bifurcation, showing that in laminar cases, relation (3.17) 
may not be true. 

3.4.3. Ruel le-Takens Scenario 

Here, chaos arises after a sequence of Hopf bifurcations from a fixed 
point to a periodic orbit, which is followed by quasiperiodic motion on a 
two-dimensional torus. The characteristic dimension thus generically jumps 
from 1 (or 0 as explained in the previous paragraph) to 3 (or 2 as also 
explained in the previous paragraph), then from 3 (or 2) to 3 (or 4 as a 
torus is the Cartesian product of two cycles), leading to a strange attractor 
studied in Section 3.3. Note that the passage from a limit cycle to a T 2 
torus may not correspond to a change of the characteristic dimension. 

3.5. Inf in i te  Dimensions 

The van Neumann theory of comparison of infinite-dimensional 
projections (e2) can be applied in order to generalize the previous analysis 
to the case of infinite dimensions. Note that the characteristic dimension 
can be defined in this context as 

dim(u) = tr(G*G) (3.20) 

where G is the partial isometry of Section 1.11, so that G*G is a projection 
and tr a normalized trace. However, infinite dimensions are not very useful 
in our case, since practical signals ought to have finite characteristic dimen- 
sions even if they are initially defined in some infinite-dimensional space. 
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3.6. Spatial Analysis 

It is clear from the space/time symmetry already described that the 
same analysis can be performed on the spatial structure of the solution. It 
leads, for example, to the description of space periodicity and the 
corresponding space bifurcations, as can be seen for example in coupled 
map lattices (see next section). It can also lead to the possibility of more 
"strange" symmetries in space which can be related, for instance, to 
convective waves which correspond to cycles in )~(T). Although this is not 
observed in both examples we analyze in the next sections, this is a 
common situation in hydrodynamics. The reduction of x(T) to a (quasi) 
one-dimensional space is an indication of the rising of a (quasi) 
homogeneous configuration, as should be the case (8) for large spatial inter- 
action in the coupled map lattice presented in the next section and some 
fluid flows. Here, we use the prefix "quasi" to account for the possibility of 
small fluctuations around the given property. 

4. APPLICATION TO A COUPLED MAP LATTICE 

Here and in the following section, we apply some of the concepts 
developed above to two examples: a coupled map lattice and an open fluid 
flow. 

4.1. A Coupled Map Lattice 

Coupled map lattices (CML) have been proposed as simple models for 
space-time complexity in one- or higher-dimensional spatially extended 
systems. By spatially coupling together dynamical systems on a lattice, they 
are a natural way to generate spatially large systems with many degrees of 
freedom which can produce various regimes going from regular motion 
(laminar states) to both spatial and temporal chaotic motion. 

We restrict our study to the one-dimensional lattice, so that in our 
case a coupled map lattice is a time-dependent chain of maps, that is, a 
dynamical system with descrete time and space. Although different systems 
have been investigated (for example, refs. 17, 34, 38, and 69), we consider 
here the case where the coupling is of the diffusive type and concerns only 
nearest neighbors. The system is a lattice of N spatial discrete points i, 
evolving in time according to the following formula: 

x'~ +1 = ( 1 -- e ) f ( x ' } )  + ~ E f ( x  7-1 ) + f ( x ' } + l  )] (4.1) 

where n is the discrete time index, e the coupling parameter (which plays 
the role of a bifurcation parameter), and f a nonlinear map. Different maps 



Spatiotemporal Analysis of Complex Signals 717 

are possible; we choose here the logistic quadratic map, which is known to 
have strong chaotic properties: 

f ( x )  = ax(1  - x )  (4.2) 

We take periodic boundary conditions, since they are the best adapted to 
simulate an extended (open) system. Also, we fix a =  3.84, since for this 
value of the parameter, the logistic quadratic map is known to have a 
chaotic dynamics that exchanges two intervals 11 and I 2 of [0, 1]. A 
description of this extended system in this range of parameter is given in 
Bunimovich et a/. (14) Here, we use the same initial condition in a systematic 
way. Our choice is a configuration with spatial period 8 defined by 

x~ = 0.75 + 0.22 sin ( ~  i) (4.3) 

since the system then undergoes various bifurcations as e varies. 
In previous CML studies (see, for example, the complete study of 

Kaneko(34)), the distinction between various regimes is based on: (i) a 
qualitative description (for the phase diagram), (ii) space (or time) Fourier 
analysis and space-time Fourier analysis, (iii) characterization in "bit" 
space: definition of an "intermittency" function (in the turbulence 
community language). The function is zero or one depending on whether 
the signal amplitude is less or greater than a certain threshold value. 

Instead, we use the biorthogonal decomposition (1.5) to analyze the 
space-time signals obtained at different values of the coupling parameter. 
Bifurcations were detected using the entropy defined in Section 2, and then 
carefully analyzed by direct computation of the dynamics as well as 
computing the different quantities defined in Sections 1 and 2. Here we 
present some of the regimes we have found, mainly focusing on the bifurca- 
tion points where a transition from one regime to another can be shown. 
Looking at Fig. 6, we can easily detect such points. Since the complete 
analysis of the bifurcation diagram is not the purpose of the present work, 
we present here only some typical cases. A complete description of the 
phase diagram of the CML from the point of view of the biorthogonal 
decomposition will be published elsewhere. 

4.2. Appl icat ion of  the Biorthogonal  Decomposit ion 

The eigenvalues, topos, and chronos of Section 1 are computed for a 
large number of bifurcation parameter values (e) in the following way: 

(i) At each value of e, the spatial correlation matrix given in (1.4) is 
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computed over a number of time steps sufficiently large so that the matrix 
converges. 

(ii) Eigenvalues and topos are then computed using the discretized 
form of Eq. (1.7). 

(iii) Chronos are deduced by taking the scalar product of the signal 
and the topos. In some cases, instead, we use the temporal two-point 
correlation function and solve Eq. (1.10). Of course, both methods lead to 
identical results (Proposition 1.7 and Remark 1.9). 

These computations include 200 (spatial) sites and 200 time points 
(taken.after a transient time of 20,000 in most cases). 

4.3. Chaotic Regime 

This is the situation for small coupling, e ~< 0.07, for which we know (15) 
that there is only one invariant measure, with exponential decay of correla- 
tions in both space and time. It is then natural to have a large charac- 
teristic dimension of the signal; for a centered signal the equirepartition of 
the energy among the chronos and topos is clearly present and therefore 
the global entropy is very large (close to 1); see Fig. 6. 

The dynamics 3, fills a quasispherical (or isotropic) bounded region of 
the characteristic space )~(x). Conversely, the dispersion of the local signals 
t/x in )~(T) is uniform in a bounded isotropic region, as expected from the 
properties of the invariant measure. 

The total energy, however, decreases very fast, in a continuous way, 
mainly due to the increase of diffusion as ~ becomes larger (see Fig. 5). 

The irregular shape of the chronos and topos can be observed in 
Fig. la. 

4.4. Laminar Regime 

At ~ = 0.08 a bifurcation takes place to a periodic motion with period 
4 in a three-dimensional phase space (up to very small deviations which 
become of the order of roundoff errors after a long transient). The entropy 
suddenly falls to a much lower plateau, below 0.09, where it roughly 
remains until e -- 0.17; see Fig. 6. In view of the discussion of Section 2.2.4, 
this is characteristic of an ordered regime where the energy is quasi- 
concentrated in the first structure. This is consistent with the appearance of 
order and coherence (standing waves) as described in Bunimovich et  a/. (14) 
and explained there by a symmetry ~ ~ ( 1 -  e). 

In this regime, the first eigenvalue e~ is much greater than the others, 
showing that the dynamics is concentrated in a very narrow region along 
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the direction ~0~ in z(X). At e = 0.13, every pair of points on the previous 
periodic orbit merge, given rise to a periodic orbit of period two in a two- 
dimensional phase space. This periodic orbit is present only in a very small 
range of the bifurcation parameter e, another bifurcation taking place to a 
periodic orbit of period 4. Notice that this bifurcation can be detected from 
Fig. 4, but it is more difficult to see on the energy and entropy curves inside 
the range of precision of our measure. 

4.5. Intermittency 

For 0.18 ~< e ~< 0.52, the system displays a typical spatiotemporal inter- 
mittent dynamics. This regime is characterized, from our point of view, by 
successive crossings of the second and third eigenvalues (see Fig. 4), a 
phenomenon which also appears in the corresponding analysis of the 
experimental signal of Section 5. 

Since the energy gets distributed among different modes, the entropy 
increases, and probably due to pattern competition in this intermittent 
regime, strong fluctuations are observed. For  some values of e, it is possible 
to relate local maxima and minima of the entropy with the crossing of 
eigenvalues (relative equirepartition) and the values of maximum eccen- 
tricity of the dynamic ellipsoid. We will come back to that phenomenon in 
more detail in Section 5, as it appears there more clearly. 

The dynamics evolves in an ellipsoid with main axis q~l whose internal 
structure evolves itself in time. The main feature of this time-dependent 
motion is the rotation of the plane of the ellipse around q01, which can be 
detected by noticing that the second and third chronos on one hand (see 
Fig. 2b) and the third and fourth on the other hand (see Fig. 3a) alternate 
in time. 

It is interesting to mention that for e = 0.18 a more careful inspection 
of the dynamics in the 3-dimensional part q~l, ~02, (P3 of the characteristic 
space shows the existence of a Silnikov (6~ homoclinic loop which seems to 
drive the dynamics for this value of the parameter. We will come back to 
this special feature in subsequent work. 

4.6. Laminar with Inverse Cascade 

For e=0.53 the system suddenly becomes laminar. In this case, 
chronos and topos are periodic as shown in Fig. 3b. The entropy falls again 
to a low level (see Fig. 6), el is much greater than e2, and e3 is almost 0 
(Fig. 4). For  0.53 <~e ~< 0.66 the dynamics has time period 4 in a charac- 
teristic space z(X) which is two-dimensional, and for 0.66 ~< e ~< 1 the (time) 
period becomes 2 in a one-dimensional characteristic space. The bifurcation 
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at e = 0.66 is of the external type described in Section 3.4, since for e > 0.66, 
e2 is zero (Fig. 4), while it is nonzero for e < 0.66 (Fig. 5). The fact that we 
do not recover the characteristic dimensions that generically correspond to 
these periods (2 and 4), as described in Section 3.4, is due to the sym- 
metries of the model. (161 Finally, although only one inverse period-doubling 
bifurcation is shown here, we know, by either theoretical results (56/or our 
numerical results using different initial conditions, that a more complete 
picture of a period-doubling cascade arises in this range of parameter. 

Finally, we can also mention that the energy suddenly drops at 
~=0.53 and has a relative maximum at e=0.66 (Fig. 5). 

4.7. Concluding Remarks 

It is clear that the above description is restricted to one initial condi- 
tion and one valuer of the parameter in the logistic map. The entire phase 
space is  known to be much richer (see, for example, Kaneko(34)). For 
instance, it is clear that a slight variation of the initial conditions would 
give a complete cascade of period doubling. (56) We have restricted ourselves 
somewhat like an experimentalist for whom it is not always possible to 
explore a full set of (initial) conditions for each value of the parameter. 

Nevertheless, we have shown how the quantities defined in Sections 1 
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and 2, specifically the global energy and entropy of the biorthogonal 
decomposition, can be very useful for the distinction of various regimes in 
the coupled map lattice studied here. They both show discontinuities at 
bifurcation points as well as typical behaviors and thus can be used in the 
description of the dynamics of this model as well as a tool for bifurcation 
detection from complex numerical or experimental data. 

5. APPLICATION TO A ROTATING DISK FLOW INSTABILITY 

5.1. The Instability Problem 

The stability of a rotating disk flow has been investigated in numerous 
numerical and experimental studies. The importance of this basic flow is 
due to the presence of a radial component of the mean (temporal) velocity 
that, combined with the azimuthal component, gives rise to a cross-flow 
inflection point and leads to the formation of spiral vortices in the 
transition regime. This phenomenon has been observed in several flow 
geometries, such as swept wings and rotating cones, in addition to a 
rotating disk. Smith (65) first observed sinusoidal waves in the transition 
regime, while Gregory e t  al. (3~ later discovered spiral vortices. By 
visualizing the flow with a china-clay technique, they could measure the 
number of vortices appearing on the disk as well as the direction e of the 
vortex axis inclined to the tangential direction. The linear stability analysis 
of the rotating boundary layer has been carried out by Gregory e t  al. (3~ for 
the inviscid flow, by Brown ~12) and Yamashita and Takematsu, (72) who 
included viscous effects, and by Kobayashi e t a / .  (4~ and Malik e t  a/., (49) 
who took into account the effect of streamline curvature and Coriolis force. 
These works predict the critical Reynolds number, the number of vortices, 
and their orientation ~. 

While the above studies concern only the first instability from laminar 
flow (essentially the formation of spiral vortices), we are seeking a descrip- 
tion and an understanding of physical phenomena in the full transition 
process, between the critical Reynolds number (at which the first instability 
occurs) and the transition Reynolds number (at the onset of turbulence). 

5.2. The Experiment 

Experimental facility, measurement techniques, and data acquisition 
are described in detail by Aubry e t  al. ~3) We only give here a brief review. 
The experiment was carried out on a rotating disk 450 mm in diameter and 
30 mm in thickness which was made of aluminum and mounted on a 
vertical axis. The disk stands in a plexiglass cylinder of diameter 800 mm, 
which itself lies in a large tank. The tank is filled with distilled water kept 
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at constant temperature. We can define a local Reynolds number as 
R e  = r2co/v, where r is the distance from the center of the disk, co the 
angular velocity of the disk, and v the kinematic viscosity of the water. 
There are thus two ways to study the instability mechanism as Reynolds 
number increases: first, one can increase the rotation speed; second one can 
simply observe (or measure) the flow along a radius from the center to the 
periphery of the disk. When the disk rotates at a constant low angular 
velocity, the flow remains laminar everywhere on the disk. For  a higher 
rotation speed, the flow stays laminar in the central region of the disk, but 
becomes u.nstable at a certain distance from the center. As the angular 
velocity is increased, the flow becomes turbulent at the periphery of the 
disk. Measurements with hot-film anemometry have been taken first with 
a fixed probe at various rotation speeds (experiment I), second with a 
moving probe at a constant angular velocity (experiment II). In the 
following, we analyze the experimental data of Aubry et  aL ~3) 
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5.3. Application of the Biorthogonal Decomposition 

Since measurements have been obtained with a single probe, a real 
space-time signal u(x, t) is not fully available. Such a signal was, however, 
artificially built by mapping the time variable over one rotation of the disk 
to a space variable. This is equivalent to dividing the signal u(t) into 
windows, each window describing one disk rotation. The signal which we 
now analyze with the tools introduced in Sections 1 and 2 can be read as 
u(i, j), where i is the index of the point on a disk rotation (inside the 
window) and j the index of the disk rotation. In the following, the index 
i is associated with the "space" variable x and the index j with the time 
variable t. The signal, in experiment I, contains 20 disk rotations (or time 
points) and 300 points on each rotation (or space points), while the signal 
in experiment II is formed with 15 time points and 512 space points. This 
number of data is varied in both cases (14 time points in both cases and 
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256 space points in experiment II were retained), but the results are found 
to be extremely robust (see Aubry et al. (3) for more details). 

We now compute the eigenvalues, topos, and chronos of the 
experimental signals as we did for the coupled map lattice in Section 4.2. 
The biorthogonal decomposition 1.5 is obtained for various Reynolds 
numbers in the transition range for the two sets of measurements I and II, 
and topos and chronos are shown in Figs. 7 and 8. As expected, the 
convergence of the series of eigenvalues decreases as Reynolds number 
increases, that is, although one or two terms are needed in the first stages 
of the transition regime, more and more terms become necessary as 
Reynolds number increases. Figures 9 and 10 present the relative energies 
Pl and P2 of the first two structures (represented by squares and triangles, 
respectively) and their evolution with Reynolds number, in experiments I 
and II. Since detailed structures depend on the specific experiment, we first 
concentrate on the first one (Fig. 9). On one hand, it is clear that the two 
curves pl(Re)  abnd pz(Re) have discontinuity points at certain Reynolds 
numbers. On the other hand, it is possible to recover two continuous 
curves by judiciously joining squares and triangles: the first one consists of 
2 squares, 4 triangles, 2 squares, 5 triangles, 2 squares, 2 triangles, and 

t ~  

Fig. 9. 
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1 square, the second one is formed with 2 triangles, 4 suares, 2 triangles, 
5 squares, 2 triangles, 2 squares, and 1 triangle. Each time these two 
continuous sets of points cross each other, the dominant structure becomes 
substructure and vice versa, showing how various instabilities take place in 
the transition process. The first crossing, for example, can be easily under- 
stood: at low Reynolds number, the first mode, namely a low-frequency 
noise due to the rotation of the disk, contains an important part of the 
energy. As the spiral vortices, presumably the second mode, develop 
through a (first) flow instability, they gaini energy and eventually overcome 
the low-frequency motion at Re = 1.63 x 105. Similar findings can be made 
in experiment II from the analysis of Fig. 8. There, the first continuous 
curve is formed by 5 squares, 2 triangles, 3 squares, and 2 triangles and the 
second one by 5 triangles, 2 squares, 3 triangles, and 2 squares. We will 
come back to these important structure crossings by analyzing global 
entropy variations. 

5.4. Global Characterist ics of the Signals 

We now report the global characteristics of the experimental signals 
and show the global energy and entropy in Figs. 11 and 12, respectively. 
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In both experiments, the energy remains at a low level (close to zero) and 
starts increasing at the first mode crossing at Re= 1.63 x 105. It then 
becomes larger and larger as Reynolds number increases, the increase being 
much faster in experiment II than in experiment I. In the following, we con- 
centrate on the global entropy, which presents some interesting features. As 
expected, it tends to increase as Reynolds number gets higher, which is 
consistent with a route to turbulence corresponding to the generation of 
disorder or chaos. Nevertheless, more careful observation shows that 
short decreasing phases succeed more important increasing periods, a 
phenomenon that we now describe. 

First, we notice that the entropy as a function of Reynolds number can 
be considered as a series of curves which are monotonically increasing, 
reach a local maximum, and slightly decrease until a local minimum which 
plays the role of starting point turbulent domain, the rate of entropy 
increase is significantly reduced (since it is already close to 1). Thus, the 
entropy rise from a level close to 0 to 1 (the most disordered case) takes 
place before the transition Reynolds number. 

We now study entropy variations and start with experiment ! 
(Fig. 12a). Let us number the points from 1 to 18 in Fig. 12a (from left to 
right). We note that the local maxima between points 2 and 3, 8 and 9, 13 
and 14, 15 and 16, and 17 and 19 coincide with the mode crossings of 
Fig. 9 and the local minima occur when the modes are the furthest apart. 
(The lack of coincidence between points 4 and 5 is explained by a 3/4 mode 
crossing--instead of a 1/2 mode crossing--which has been observed, but 
we do not report it here.) This can be understood in the following way. 
When two structures are in competition, the energy is equally distributed 
among them: the entropy reaches a local maximum; after the overtaking 
of the substructure which has become the dominant one, the energy of 
the loser drops very fast and the entropy reaches a local minimum. From 
that point, the same phenomenon occurs again: another structure starts 
gaining energy, the entropy increases again until a new local maximum, 
etc. Note that the two competitive structures may be different or the 
same as Reynolds number increases. Local maxima of entropy are thus 
very useful for detecting mode crossings, i.e., various "instabilities" in the 
flow. 

Let us suppose that on an interval J l =  ERe1, Re2] (so that H has 
local minima at Ret and Re2), mode crossing concerns the first two 
structures only and that the energy of the other structures stays constant 
(in a first approximation). Letting C be 

c =  2 pk (5.1) 
k > 2  
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we can write the relative energy of the second structure P2 in terms of Pl 
and C: 

P 2  = 1 -- Pl -- C (5.2) 

Since the sum of all the Pk is equal to 1, we can write the entropy as 
function of Reynolds number: 

H(Re)= - p ~ l o g p ~ - ( 1 - p ~ - C )  l o g ( 1 - p ~ - C ) - D  (5.3) 

where D represents the (approximately constant) sum of entropies of all the 
structures, except the first and second ones. The Reynolds number 
dependence of the right-hand side of Eq. (5.3) is (approximately) contained 
in p~. The function H(Re) on the successive Reynolds number intervals 
(defined with local entropy minima) satisfies (5.3). However, as Reynolds 
number increases, Pl becomes smaller and C larger. 

The same correspondence between entropy local maxima and 
structure crossings can be observed in the results of experiment II given in 
Fig. 12b. If we number the points from 1 to 12 from left to right, we can 
easily see that local entropy maxima occur between points 5 and 6, points 
7 and 8, and points 10 and l l. These correspond exactly to 1/2 mode 
crossings observed ini Fig. 10 and previously commented upon. 

5.4.3. Physical Interpretat ion 

In experiment I, where the probe was moved and the angular velocity 
of the disk kept constant, the first instability was seen to occur at Reel = 
1.20x 105 and transition to turbulence to take at Retl =2 .7 7 x  105. In 
experiment II, where the probe was fixed and the disk rotation speed 
varied, we found a critical Reynolds number Rec2= 1.10x l0 s and a 
transition Reynolds number of Ret2 = 2.79 x 105. Both experiments give 
thus approximately the same values for critical and transition Reynolds 
numbers and they are consistent with other values reported in the 
literature, which can be found, for example, in Malik et a/. (49) (though here 
is considerable controversy). Moreover, we found that the Reynolds 
number at which the patterns born through the (first) instability become 
the most energetic (at the first local entropy maximum) is the same in both 
experiments: Re = 1.63 x 105. The concept of this (third) Reynolds number 
may be interesting and should be investigated further. 

It is well known that the first instability leads to the formation of 
spiral vortices. Although we have not proved it yet, it is likely that our first 
biorthogonal structure indeed represents these vortices after the first 
structure crossing has occurred. In fact, these vortices appear also in a 
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Fourier analysis, as shown by Aubry et  al., (3~ who have plotted the Fourier 
power spectrum: the frequency characteristic of the developing instability 
corresponds to the number of spiral vortices (around 32) observed in 
experiments. It is interesting to not that the first structure crossing found 
in our analysis via the biorthogonal decomposition coincides with the 
Fourier mode crossing observed in the Fourier spectrum. If the Fourier 
analysis is useful in this first stage of the instability, it soon becomes useless 
as a thick packet of wave numbers gets activated. 

6. S U M M A R Y  A N D  CONCLUSION 

To conclude, we have rigorously shown that any spatiotemporal 
(scalar or vectorial) signal can be decomposed into spatial and temporal 
orthogonal modes. This has been achieved in terms of the spectral analysis 
of an operator defined from the space of spatial signals to that of temporal 
ones. We were then able to describe some features of the information con- 
tained in the signal in terms of spectral properties. This allowed some 
effective computations of global quantities related to this specific analysis 
as well as some bounds of these quantities. 

A remarkable property of the decomposed form of the signal is the 
association of each space component (which we call a topo) with a time 
component partner (which we call a chrono). The latter gives the time 
evolution of the former and the former is the spatial configuration of the 
latter. 

In a simpler---but perhaps more abstract--way, we can think of the 
biorthogonal decomposition as a convenient change of variables in the 
phase space of the underlying dynamical system. From this viewpoint, we 
proposed to detect and analyze some of the possible changes (i.e., bifurca- 
tions) in the dynamical regime as some parameter varies. We argue that the 
detection of some bifurcations is often easier (and in some cases only 
possible) in such a system of coordinates. 

The essential ingredients which carry this analysis in a simple way are: 
(1) the separation of time and space components, (2) the low dimension of 
the characteristic space inside the phase space where the signal effectively 
lies, and (3) the location inside that space of a bounded region where the 
dynamics stays most of the time. 

A system of a coupled map lattice and an open fluid flow were then 
used as grounds for the application of the concepts and techniques pre- 
viously developed. Despite the fact that we used some preliminary data in 
both examples which will require some further investigations, we hope to 
have illustrated our method and convinced the reader how useful this 
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bridge between statistics and dynamics can be for the analysis of numerical 
or experimental data. 

Finally, having in mind the examples treated above, we can trust that 
these ideas might be of some help in the study of-systems displaying 
complex space-time dynamics. 
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